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HYDROGEN ATOM IN INTENSE MAGNETIC FIELD
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Abstract. The structure of a hydrogen atom situated in an intense magnetic field is investigated.
Three approaches are employed. An elementary Bohr picture establishes a crucial magnetic field
strength, H,~5 x 10 G. Fields in excess of H, are intense in that they are able to modify the charac-
teristic atomic scales of length and binding energy. A second approach solves the Schrédinger
equation by a combination of variational methods and perturbation theory. It yields analytic expres-
sions for the wave functions and energy eigenvalues. A third approach determines the energy eigen-
values by reducing the Schrédinger equation to a one-dimensional wave equation, which is then
solved numerically. Energy eigenvalues are tabulated for field strengths of 2 x 101 G and 2 x 10?2
G. It is found that at 2 x 10!2 G the lowest energy eigenvalue is changed from —13.6 ¢V to about
—180 eV in agreement with previous variational computations.

1. Introduction

It is generally agreed that neutron stars are the seats of intense magnetic fields[1]
(~10'2 G). Many aspects of atomic structure are profoundly altered by such enor-
mous fields — binding energies[2], opacities[3], etc. We suggest a thorough re-examina-
tion of ‘conventional’ atomic physics, imbedded in an intense magnetic field (IMF). As
a step in this direction, we have made a detailed study of the hydrogen atom — a likely
guide if the history of atomic theory is to repeat at 102 G.

In keeping with historical precedent, we first present the Bohr theory. While subject
to limitation, the Bohr picture may often be relied upon as a rule-of-thumb guide.

Our major effort combines analytic and numberical solutions of the Schrédinger
equation. The analytic scheme is detailed in Sections 3-5. Approximate analytic wave
functions and the corresponding energy spectra are established. In Section 6 we pre-
sent the results of a combined analytical-numerical approach. There, the Schrédinger
equation is reduced to a one-dimensional wave equation which is solved numerically.
A comparison of the wave functions and energy spectra obtained by these two methods
suggests that the analytic wave functions are sufficiently accurate for the calculation of
many atomic properties.

2. Bohr Theory

The classic Bohr model is amended by imposing a uniform magnetic field, H. We as-
sume that the electron and ion lie in the same plane and that they are tied to the same
line of force. For an ion of infinite mass, the electron moves in a circular orbit of radius
¢ under the combined Coulomb and Lorentz forces. Equations (1)-(3) express New-
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ton’s second law, the total electron energy, and the quantization of angular momentum,

= 4
e ¢ 2 M
, ¢
E=Imv" —— 2
2 0 (2)
eHo?
mog — 1% = (I+ ) h; 1=1,0,2,.... 3)
c

The choice of /+1 as the angular momentum quantum number facilitates a subse-
quent comparison with the results of the Schrédinger equation analysis. It is conve-
nient to introduce the Bohr radius, ay, and energy, Ey, together with the cyclotron fre-
quency, o, and radius, R, defined as follows

a, = h*[me* ; Ey = e*2a, = 13.6 eV
— 4)
o =le] Himc; R=\/2h/ma)

The discrete radii and energies which emerge as solutions of Equations (1)-(3) are
determined by

(Qt/ao) + (QI/R)4 = (l + 1)2 (3)

E,=4(l+1)ho + tmo?e} — 5 (6)

44

The binding energy of the electron is —e&,= Egay/go. In the zero field limit, these ex-
pressions reduce to the historic results, g, — (/+1)*a,, E,— — Eg/(I+1)*. An intense
magnetic field may render g,<a,, in which event the binding energy is increased
greatly over the Bohr value. The field strength at which magnetic binding begins to
dominate the Coulomb force is established by equating R and a,. This transition to
the IMF regime occurs at

H,=2m’c(ef/h)’ =47 x 10° G. (7)
For fields in excess of H,, the orbits scale according to

a~/1+1R, ®)
and the binding energy becomes

— &, & Egag/R. 9)

If the field strength is expressed in units of 10'? G, the binding energy predicted by the
Bohr model is

— ¢, ~280 /B, eV. (10)

The quantum treatment of Sections 3-4 suggests an orbit scale of Q,z\/ (+% R

The binding energy proves to be about twice the value obtained by numerical and var-
ational solutions of the Schrédinger equation. The Bohr treatment is defective in that
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it ignores motion parallel to the magnetic fields. The kinetic energy of the electron
parallel to the field reduces the binding energy.

In summary, the Bohr picture establishes the crucial field strength (H,~5 x 10° G),
reveals the intense field orbit scale (¢,~/(/+1) R), and hints at the binding energy.

3. Schridinger Theory

The Schrodinger equations for an electron under the simultaneous presence of a con-
stant uniform magnetic field and a Coulomb field is

}22 2 Z 2
volA) B2y = v (1)
" 2m hc r
where
i
Hevxa =% (12)
2me

H being the external magnetic field such that H,=H,=0, H,= H. When Z=0, Equa-
tion (11) admits the well-known solution[4]

¥Y(r)= \/1L‘3 e d, (xy) (13)

where

Dy (xy) ;/— \/2')) (')’Qz) ; n—s=1;
(14)
?=x>+y*; v=%H Lo ;
H,72 " R?
Z=hlme;  Hy=m'cleh; 1,(E%) =8 V201 (&%) x
x (n!sh)™1?

& = yo® = @*IR?,

Q" is the associated Laguerre polynomical; 7 is the principal quantum number and /
the angular momentum number. The quantum number s has the geometrical interpre-
tation of the distance of the center of the orbits from the origin. In Equation (13) the
(x, y) and z coordinates separate because the magnetic field does not alter the z-motion
of the particle.

It is evident from the exp(—40?/R?) structure of I, that the cyclotron radius R de-
fines the radial scale of the probability distribution. In the IMF regime, R is much smal-
ler than the Bohr radius. The result is a magnetic constriction of the familiar spherical
electron distribution. The electron probability cloud become cigar-shaped. The Bohr
radius fixes the scale of the charge distribution parallel to the field. The cyclotron
radius plays the role of scale factor perpendicular to the field.

The magnetic constriction of the radial electron distribution is common to all
states. This constriction produces a greatly enhanced binding only for the states in
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which the wave function is without nodes in the z direction, i.e., parallel to the field.
We refer to these nodeless states as tightly-bound because at field strengths in the
10'? G range, binding energies are well over 100 eV. The remaining states fall into two
classes according to whether the z dependence of the wave function exhibits even or
odd parity. We refer to these states as hydrogen-like because their energy spectra are
quite similar to the familiar hydrogen spectrum.

The energy eigenvalues associated to the wave function (13) are[4]

e=ho(n+o+%)+ p’2m (15)

n=20,1
c=+4%
=&, + p2f2m.

In the absence of the Coulomb interaction, there is an infinite degeneracy : states with a
given n and o, but different s and /, have the same energy. This magnetic degeneracy of
the electron energy is well-known. Our considerations are restricted to states with
n=0, o= —1, for which ¢, =0. In the IMF regime, all states have magnetic energies
g, far in excess of the Coulomb binding. Hence, bound states result only for n=0,
o=—1.

The Coulomb interaction removes the degeneracy, giving birth to an infinite set of
tightly-bound states and to a doubly infinite set of hydrogen-like states. The tightly-
bound states correspond to those discovered in the Bohr theory. For these states, the z-
dependent portion of the wave function is without nodes and has a maximum at z=0.
In Section 4 we develop a variational solution for these tightly-bound states. In addi-
tion to the tightly-bound states there are states for which the z-dependent portion of
the wave function resembles closely the solutions of the one-dimensional Schrédinger
equation with a potential —e?/(|z|+b). That is, it resembles the solutions of a one-
dimensional wave equation for a truncated Coulomb potential [5, 6]. In Section 5
these solutions are used as the basis for a perturbation solution.

4. Tightly-Bound States

For states with n=0, (s= —/=0; 1, 2, ...), a variational computation is performed with
a trial function of the form * (for n=0, the Laguerre polynomials reduce to a constant).

¥ = B e Ve 1 (7). (16)
For f(z) we adopt[7]
f(z) = AP (17)

where 4 is the variational parameter. The tightly-bound states have ¢, =0 and their
energy is therefore given by

fZ A 2 q]lZ d3
E = (Y gz | AT (18)
2m aZ \//QZ + ZZ

* The radial probability distribution varies as £2stle=¢, This has a maximum at é=+/s+% or o=
R +/s+% which may be compared with the R 1/(s+1) scale of the IMF limit of Bohr theory.
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The variational method is applicable to all of the tightly-bound states — not just the
ground state — provided the trial function for the sth excited state is orthogonal to all
of the exact eigenstate of lower energy. This is guaranteed here by the e™*? factor
which appears in the exact eigenfunctions as well as in our trial functions.

Performing the necessary integration the energies are given (in units of E;=13.6€V)

2RA, ao\?
E = 7_1/132 L(A s 19
[ ao\/n ( )] < ) ( :

with A, fixed by the condition 0E;/04=0. I(4) is given by

(sin 0)2** 1 d0
L(2) = . 20
(%) f (sin® 6 + A% cos? ) *? (20)

The evaluation of the I is not difficult, but their unwieldy form complicates the task of
fixing the E,. Fortunately, the A  are small in the IMF regime, permitting the approxi-

mations,
I, ~ 21log(2/4)
s 1 A<l 21
Is % IO - Z - S > 1 < ( )
k=1 k

Imposing the variational constraint leads to

E——) [ Ry ](“) (22)
s= T Al = T 24 I
ap/n J\R

where A, is the solution of the following transcendental equation

2
Ay = log( )—1—lAs:|,
ao\/ﬂ[ As :

1
Ag=0; As=2 p $=1
k=1

(23)

For a field strength of 2 x 10*? G, Equation (22) gives —E,=13.5(=x 183 eV) for
the ground state binding energy, about 49 shy of the value 14.0 obtained in Section 6
from a numerical solution of the wave equation. The spectrum of tightly-bound
states forms an infinite sequence which approaches the continuum (s — c0) as s~ /2.

5. Hydrogen-Like States

To deal with the hydrogen-like states we adopt a perturbation theory approach. The
actual potential —e?/r is replaced by the one-dimensional potential —e?/(|z| +d) and
their difference is treated as a perturbation. For the zero-order wave functions we take

¥=C,f(2) (&%) e™™ (24)
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where f(z) is a solution of
hl de €2
oz " maal =ES (25)
The length parameter, d, 1s at our disposal. The total energy, through first order in the
perturbation is

E=E,+<V>, (26)

|¥|* de f*dz
Vy=—¢* 2 .
V> eJ e T d (27)

where

Again, we have assumed that ¥ and f(z) are separately normalized to unity.
The solutions of (25) may be expressed in terms of Whittaker function, W ({)[5, 6, 8].
2z 2d
f(2)=BW,({); (=—+—. 28
g Bao,  Ba, (28)

The power series form of the Whittaker functions is

-1/2¢ 1 0 ©
Wy )= ;(—,3) <— B +r;1 }.rC’+1 + [logl + KB] ZZO O‘r{” 1> (29)
with the various coefficients given by
1— r
a,:rf(rff)!, L=Br=(-B)2=F) ..~ B)

= S L+ 1= )7 = (k1) = (4 2)
Ky= ¥ (=)= v (1)~ ¥(2),

¥ (x) is the logarithmic derivative of the gamma function. The index f§ (and through it
the energy spectrum) is determined by the boundary condition imposed on f(z) at the
origin. Taking f(0)=0 results in states of odd parity; requiring df/dz|,_,=0 generates
the states of even parity. The energy E, is related to f by

E,=— Ey/f’. (30)

The values open to § depend on the parameter d. We propose that a judicious choice
for d is one which renders (7") =0. The energy then differs from the unperturbed value
only in second order. Unfortunately, it is not possible to obtain an analytic expression
for (V> (and thus our desire to avoid it entirely!). This forces us to resort to guess-
work of a sort. The actual scheme for assigning d a value will be discussed shortly. For
the moment it sufficies to note that we can safely assume d/a, < 1. This follows because
d somehow measures the radial probability distribution whose scale is R<a,. With
dla, <1, the eigenvalue equations lead to values of 8 close to the positive integers.
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Following a scheme detailed by Loudon[5], we find, for states of odd parity,

ﬁodd=p+2d/a0; P=15 2: 3,"'9 (31)

while for states of even parity,

1
ﬂeven=p+ - p=123,.., (32)
t+/1*+ 73
with
1
t=~0.58 — djag — } log (2d]ac) + 5. (33)

As noted above, the value assigned to the parameter d is to be such that (V") =0.
We now give consideration as to how this may be accomplished. The number of nodes
in the z direction* equals the index p. The turning point of Wj., occurs at z=2p’a,.
There is a roughly uniform spacing of nodes and antinodes, with none beyond the
turning point. Thus, the node-antinode spacing is approximately pa,. For states of
even parity, the first node should lie near z=pa,. The condition that {(}V)>=0 is

f?dz f @e?do [ f1dz
z+d 5! 22 1+ R29
0 0 0 \/Z +

(34)

For zS pa,, the z integrands are virtually equal. The integral on the left receives a sub-
stantial contribution from the range 0 < z< z,, where z, is several times d, but z, <pa,.
Over this narrow range, we may take />~ const.

With these approximations, (34) reduces to

. <zo> J‘Gse_e d91 ( 2z, )
og|— |~ og — .
d s!

) R./6
The parameter z, drops out leaving

R\ |1 s 1ossi
0 ot - =
2log<7>= 8- Lk’

2d
logy; s=0; y=0.577....

For our purposes, the sum Y 1/k is adequately approximated by log(s-+1); whence,
k=1

for states of even parity, we find that d is directly proportional to R

s+ 1R
deven = \/ P (35)
y 2

For odd parity states, over the range 0<z< pa,, where the z integrands differ, f(z) is

* Between 0 and infinity. For odd parity states this counts the node at the origin.
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roughly proportional to z. If, in addition, we replace ¢® by its mean value (s+1) R,
the condition {V>=0 requires

bao pao

J z% dz J‘ z* dz
Jzvd ) /2 (s+ )R
This yields

pao . 4pag
dogag=—[loghi—1]; A=—""—7-—.
The even and odd parity energy spectra are given by (in units of Ej)
1 -2
Eps™ =~ (p + —r> ,
" t+ 1+ 73
(37)

2p ) -2
Ep) =— (P + T [log — 1]) .

The parameters ¢ and 1 are defined by Equations (33) and (36), respectively. For a field
strength of 2 x 10'%2 G,

t=080—-1%1 1)+

A =1696 p2/(s + 1).

6. Exact Numerical Solutions

As we said before, the Schrddinger equation for an electron under the simultaneous
presence of a constant uniform magnetic field and a Coulomb field, does not admit
exact analytic solutions since the cylindrical and spherical symmetry of the problem
does not allow a separation of variables. These technical problems prompted Schiff
and Snyder [9] as early as 1939 to introduce the so-called adiabatic approximation
described below. In Equation (13) the (x, y) and z coordinates separate because the
magnetic field does not alter the z-motion of the particle. The adiabatic hypothesis
consists of taking the exact wave function ¥ (r) as a linear superposition of function
of the form (13) with exp(ipz) changed into a new function f(z) to be determined.
Physically, the assumption that the variables do separate even in the presence of a
Coulomb field, is equivalent to saying that the strongly quantized orbits in the x-y
plane are not changed by the Coulomb field. That this is a good line of approach is
fully justified by the preceding arguments. Let us therefore write

Y (r) =% c.fa(z) @ (xy) (38)

where « is the set of quantum numbers » and /. Substituting it back into Equation (11)

we obtain
2

h 2
Setn|d-y V=T |h@-ETen ) G 09

where &7 is given by Equation (15).
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Multiplying Equation (39) by @} from the left and integrating on x and y, the result
is

%5 () () -y _

= Ecyf3(z); (40)

hl
cgel f (z) — Y. Vif(z) =2y cajdx dy

or (V2=V?) defining a one-dimensional potential V,; as

Vs (2) = & j ax dy 220V )rgbﬂ ) (41)
with
+ﬁz—v2+zi'v ] #@ =556 @2)
m cs ap B B/ B ’
E=—E+¢é. (43)

Equation (42) is a one-dimensional Schrédinger equation or more properly an infinite
set of coupled Schrodinger equations. Such a problem is well-known in quantum
chemistry and refined methods have purposely been developed to handle the situation.
The number of coupled equations to be solved strongly depend on the degree of over-
lapping of the @’s. Looking back to Equation (14) we see that the higher H, the higher
the degree of overlapping since these wave functions contain a Gaussian e~ 7. The
degree of overlapping could be slightly perturbed by the presence of the Laguerre
polynomial. On the other hand, it is clear from Equation (43) that the only sizeable
effect should occur at =0, 6= —1, i.e., at zero transverse energy, since otherwise the
‘atomic part’ or the spectrum (z-direction) which we expect to be of the order/of some
tens of eV will be negligible with respect to the L energy that for H/H,~1 is of the
order of 1 MeV. For these reasons we will approximate

2. CaVap 5V
a

and Equation (42) takes the form

hZ
RO FASE A0) @)

Given a set of quantum numbers, # and s, we will compute V,(z) and consequently the
eigenvalue E: since they are quantized we will characterize them by the index p.

7. The One-Dimensional Coulomb Potential

From the definition of V,(z), Equation (41) and the form of the wave functions @(x, y),
Equation (14), we have (x=r cos ¢, y=r sin ¢)

o0 [eo}

Vi (2) = e J rdr— 2oy =gy [ s

1
\/zz—l—rz

L (x)

/x2+yzi.

(45)

0 0
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Since (x+a*)~ /2 is the Laplace transorm of the Bessel function of the order zero, i.e.,

[ee]

Jx — J dye™=J (y/¥)

Equation (45) becomes

Vis(2) = € /7 f e ViL, (y?/4) I (¥*/4) dy, (46)
(0]

where we have used the fundamental relation [4]

0

f dxl,g (x) I (x) Ja-py- (-0 (2 \/E) =1, (4) Ips(A).

0

Equation (46), although still very difficult to compute, is in a much better form since
we have separated the indices » and s whose physical significance is entirely different.
For practical purposes, Equation (46) can be cast in a varity of forms. First of all,
it is convenient to rewrite Equation (44) in atomic units, i.e.,

[;':2' + Vs (z)] £,(z) = E,f,(2), @

with
Z=Z/a05 Ep=_Ep/EH’

0

H 2 2 2 7
Vo (z) = - EJ e” " dylL, (y*/4) L (»*/4), (48)

0

1 |H 2
A=-_|— z; o =e[hc.
o« V2H,

Using the definition of the I,,; functions of Equation (14), we obtain

A e AR

p0q0

2(ptq)

X e [¢” ERFC ], (49)

where
ERFCx:fe_yZ dy.

For n=s=0, Equation (49) simply becomes
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4 [H
Voo (z)z& \/H ¢’ ERFC A (50)
q

which is exactly Equation (12) of Schiff and Snyder [9].
Using a rational approximation to ERFC(8), we obtain

¢” ERFCx = (1 — ERFx) ¢ =

4 i a, n as 4 ay " as
Tl4ox (L+ox)® (L+ox)  (T4+ex)* (14 0x)
(51)
with
0=0327 a,=025 a,=-0284 a,=1421

a4 = — 1.45 as = 1.06.

We see that the first term is exactly the truncated Coulomb potential used in Section 5,
Equation (25). Inclusion of the second term in expansion (51) would still allow an
exact solution of Equation (25) in terms of Whittaker function with two indices.

Equation (47) was solved numerically for n=0,5=0, 1,2, ...5 at H=2x 102 and
H=2x10"° G. The results are shown in Tables I-VI.

TABLE 1

The table entries are the binding energies in units of Ex=—13.6eV. The
numbers in parenthesis were obtained using Equation (22) or Equation
(37). All others were obtained by the numerical method outlined in the
Appendix. Tables I — III give results for a field strength of 2 X 10!2 G.
Tables IV — VI convey the results for 2 x 1010 G,

n=s=0 n=0, s=1
Even Odd Even Odd
0.0203 0.0202
0.0251 0.0248
0.0277 0.0270
0.0354 0.0349
0.040 0.0398
0.0538 0.0529
0.061 0.0621
0.091 0.0892
(0.089) (0.0870)
0.111 0.110
0.111D) 0.111)
0.187 0.181
(0.180) (0.175)
0.248 0.247
(0.249) (0.248)
0.58 0.552
(0.548) (0.520)
0.988 0.972
(0.984) (0.968)
14.0 10.6
(13.5) (10.0)
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TABLE II
n=0,s5s=2 n=0,s5s=3
Even Odd Even Odd
0.0202 0.0269
0.0246 0.0344
0.0276 0.0397
0.0346 0.0520
0.0397 0.0618
0.0524 0.0872
(0.085)
0.0610 0.109
(0.110)
0.0880 0.176
(0.086) (0.170)
0.110 0.244
0.111) (0.246)
0.178 0.521
0.172) (0.496)
0.245 0.953
(0.247) (0.944)
0.534 8.15
(0.508)
0.962
(0.956)
9.09
(8.50
TABLE III
n=0,s=4 n=0, s=35
Even Odd Even Odd
0.0269 0.0268
0.0342 0.0341
0.0396 0.040
0.0517 0.0514
0.0617 0.0616
0.0865 0.0860
(0.084) (0.084)
0.109 0.109
(0.110) (0.110)
0.173 0.172
(0.168) (0.166)
0.243 0.242
(0.245) (0.244)
0.512 0.503
(0.488) (0.480)
0.945 0.937
(0.936) (0.9249)
7.50 ‘ 7.01
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TABLE 1V
n=0, s=0 n=0,s=1
Even 0Odd Even Odd
0.0321 0.0309
0.0378 0.0369
0.0479 0.0459
0.0568 0.0565
0.0784 0.0742
0.101 0.0970
0.151 0.140
0.217 0.204
0.405 0.355
0.748 0.659
3.14 2.07
TABLE V
n=0, s=2 n=0,s5s=3
Even 0Odd Even Odd
0.0302 0.0297
0.0362 0.0357
0.0447 0.0439
0.0552 0.0543
0.0719 0.0702
0.0942 0.0921
0.134 0.130
0.195 0.189
0.330 0.313
0.605 0.567
1.69 1.46
TABLE VI
n=0, s=4 n=0,s=5
Even Odd Even Odd
0.0294 0.0290
0.0353 0.0349
0.0433 0.0428
0.0535 0.0529
0.0690 0.0679
0.0904 0.0890
0.126 0.124
0.183 0.179
0.300 0.290
0.538 0.515
1.32 1.21
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8. Conclusions

Various considerations are in order just by looking at the preceding tables.

(1) For afixed value of s the energy of the tightly-bound state is greatly depressed in
comparison with the hydrogen-like state energies. For fields in the 10'* G range the
separation exceeds 100 eV.

(2) With increasing s, the binding energy of the tightly-bound states decrease. The
decline exhibited by the tabulated values is somewhat more rapid than the s~ !/? be-
havior deduced from the Bohr theory. For large s the variational calculation leads to
the same s~ /2 spectrum. At a field strength of 2 x 10'? G a simple calculation shows
that a value of s 100 is needed to give a binding energy comparable to the zero-field
value of 13.6 eV.

(3) Overall, the effect of an IMF on the hydrogen-like states is to group them ac-
cording to their parity with respect the field direction. Eigenvalues for states of odd
parity follow closely the law 1/p?, p=1, 2, 3, .... The even parity states form a hy-
drogen-like sequence with a ‘quantum defect’, 6, which is only weakly dependent on
the quantum numbers s and p. The even parity eigenvalues vary as 1/(p+6)?, p=1, 2,
3.

(4) In Tables I-1II, we have also quoted, in parentheses, the values obtained using
the analytic expressions given by Equation (37) or the variational results of Equation
(22).

A comparison of the z-dependent portion of the wave functions reveals differences
of less than 5% in values of the antinode amplitudes and positions of/the nodes and
antinodes. Complete agreement is of course not to be expected since the two potentials
are not identical.
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Appendix
NUMERICAL METHOD
The solutions of the Schrédinger equation are computed over the range (0<z< o),

instead of (— o0 <z < o0), the actual range, since they are odd or even over the latter
range. The boundary conditions at z=0 are

£(2)]oco=0 (odd),
ZZ =0 =0 (even).

In practice however, the second condition is replaced by

© Kluwer Academic Publishers * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1972Ap%26SS..17..277C&amp;db_key=AST

5&SS. I7C ZTTTh

rTI72A

HYDROGEN ATOM IN INTENSE MAGNETIC FIELD 291

f(z) ~Ccoskz,
k=V(0)-E,
which follows from the fact that ¥ behaves as a constant near z=0. This is necessary

for the particular method chosen to solve the differential equation. At z= o0, the
other boundary point, the solution becomes

f(2)=CW, () ~%e %2,
a=A42JE, (=2Ez,

where W,, is Whittaker’s confluent hypergeometric function since here the potential
behaves like a Coulomb potential for large z, i.e.,

V(z)~—§.

F-Amdieo]

The integration of the differential equation follows the method of Numerov which
applies to equations of the form »”* =¢(x)y of which the Schrédinger equation is such a
type. y;; (the value at x;) is computed as an algebraic function of y;_," y;_, and g(x)
at the respective points.

The energy E is obtained by making a guess close to what one believes is the true
energy corresponding to a given number of nodes. A correction formula which gives a
new energy in terms of the old and the discontinuities in the solution and its derivative
at the classical turning point (where V'(z)— E=0) is applied repeatedly until the dis-
continuities disappear.[10]
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